Exploring Flood Filling Networks for Instance Segmentation of XXL-Volumetric and Bulk Material CT Data

Author:

Gruber RolandORCID,Gerth StefanORCID,Claußen JoelleORCID,Wörlein NorbertORCID,Uhlmann NormanORCID,Wittenberg ThomasORCID

Abstract

AbstractXXL-Computed Tomography (XXL-CT) is able to produce large scale volume datasets of scanned objects such as crash tested cars, sea and aircraft containers or cultural heritage objects. The acquired image data consists of volumes of up to and above $$\hbox {10,000}^{3}$$ 10,000 3 voxels which can relate up to many terabytes in file size and can contain multiple 10,000 of different entities of depicted objects. In order to extract specific information about these entities from the scanned objects in such vast datasets, segmentation or delineation of these parts is necessary. Due to unknown and varying properties (shapes, densities, materials, compositions) of these objects, as well as interfering acquisition artefacts, classical (automatic) segmentation is usually not feasible. Contrarily, a complete manual delineation is error-prone and time-consuming, and can only be performed by trained and experienced personnel. Hence, an interactive and partial segmentation of so-called “chunks” into tightly coupled assemblies or sub-assemblies may help the assessment, exploration and understanding of such large scale volume data. In order to assist users with such an (possibly interactive) instance segmentation for the data exploration process, we propose to utilize delineation algorithms with an approach derived from flood filling networks. We present primary results of a flood filling network implementation adapted to non-destructive testing applications based on large scale CT from various test objects, as well as real data of an airplane and describe the adaptions to this domain. Furthermore, we address and discuss segmentation challenges due to acquisition artefacts such as scattered radiation or beam hardening resulting in reduced data quality, which can severely impair the interactive segmentation results.

Funder

Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

Reference42 articles.

1. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017)

3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2016)

4. Claußen, J., Woerlein, N., Uhlman, N., Gerth, S.: Quantification of seed performance: non-invasive determination of internal traits using computed tomography. In: 14th International Conference on Precision Agriculture (2018)

5. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3