Electrochemical Sensors Based on the Electropolymerized Natural Phenolic Antioxidants and Their Analytical Application

Author:

Ziyatdinova GuzelORCID,Guss Ekaterina,Yakupova Elvira

Abstract

The design and fabrication of novel electrochemical sensors with high analytical and operational characteristics are one of the sustainable trends in modern analytical chemistry. Polymeric film formation by the electropolymerization of suitable monomers is one of the methods of sensors fabrication. Among a wide range of the substances able to polymerize, the phenolic ones are of theoretical and practical interest. The attention is focused on the sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. The typical electropolymerization reaction schemes are discussed. Phenol electropolymerization leads to insulating coverage formation. Therefore, a combination of electropolymerized natural phenolic antioxidants and carbon nanomaterials as modifiers is of special interest. Carbon nanomaterials provide conductivity and a high working surface area of the electrode, while the polymeric film properties affect the selectivity and sensitivity of the sensor response for the target analyte or the group of structurally related compounds. The possibility of guided changes in the electrochemical response for the improvement of target compounds’ analytical characteristics has appeared. The analytical capabilities of sensors based on electropolymerized natural phenolic antioxidants and their future development in this field are discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference110 articles.

1. Electrochemical sensors based on electropolymerized films;Qin,2011

2. Conductive Electroactive Polymers: Intelligent Materials Systems;Wallace,2003

3. Conducting Polymers: A New Era in Electrochemistry;Inzelt,2012

4. Phenazines and Polyphenazines in Electrochemical Sensors and Biosensors

5. Non-Conducting Poly(O-Aminophenol) Films in the Field of the Bioelectrochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3