Effect of Error in SO2 Slant Column Density on the Accuracy of SO2 Transport Flow Rate Estimates Based on GEMS Synthetic Radiances

Author:

Park Junsung,Choi WoneiORCID,Lee Hyung-Min,Park Rokjin J.,Kim Seong-Yeon,Yu Jeong-Ah,Lee Dong-Won,Lee Hanlim

Abstract

This study investigates the uncertainties associated with estimates of the long-range transport SO2 (LRT-SO2) flow rate calculated hourly using Geostationary Environment Monitoring Spectrometer (GEMS) synthetic radiances. These radiances were simulated over the Korean Peninsula and the surrounding regions using inputs from the GEOS-Chem model for January, April, July, and October 2016. The LRT-SO2 calculation method, which requires SO2 vertical column densities, wind data, and planetary boundary layer information, was used to quantify the effects of the SO2 slant column density (SCD) retrieval error and uncertainties in wind data on the accuracy of the LRT-SO2 estimates. The effects were estimated for simulations of three anthropogenic and three volcanic SO2 transport events. When there were no errors in the GEMS SO2 SCD and wind data, the average true LRT-SO2 flow rates (standard deviation) and those calculated for these events were 1.17 (0.44) and 1.21 (0.44) Mg/h, respectively. However, the averages of the true LRT-SO2 flow rates and those calculated for the three anthropogenic (volcanic) SO2 events were 0.61 (1.17) and 0.64 (1.20) Mg/h, respectively, in the presence of GEMS SO2 SCD errors. In the presence of both errors in the GEMS SO2 SCD and wind data, the averages of the true LRT-SO2 flow rates and those calculated for the three anthropogenic (volcanic) SO2 events were 0.61 (1.17) and 0.61 (1.04) Mg/h, respectively. This corresponds to differences of 2.1% to 23.1% between the simulated and true mean LRT-SO2 flow rates. The mean correlation coefficient (R), intercept, and slope between the true and simulated LRT-SO2 flow rates were 0.51, 0.43, and 0.45 for the six simulated events, respectively. This study demonstrates that SO2 SCD accuracy is an important factor in improving estimates of LRT-SO2 flow rates.

Funder

National Institute of Environmental Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3