Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS)

Author:

Choi Won Jun1ORCID,Moon Kyung-Jung1,Kim Goo1ORCID,Lee Dongwon1

Affiliation:

1. National Institute of Environmental Research, 42 Hwangyong-ro, Seo-gu, Incheon 22689, Republic of Korea

Abstract

Air pollutants adversely affect human health, and thus a global improvement in air quality is urgent. A Geostationary Environment Monitoring Spectrometer (GEMS) was mounted on the geostationary Chollian 2B satellite in 2020 to observe the spatial distribution of air pollution, and sequential observations have been released since July 2022. The reliability of GEMS must be analyzed because it is the first payload on the geostationary Earth orbit satellite to observe trace gases. This study analyzed the initial results of GEMS observations such as the aerosol optical depth and vertical column densities (VCD) of ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO), and compared them with previous studies. The correlation coefficient of O3 ranged from 0.90 (Ozone Monitoring Instrument, OMI) to 0.97 (TROPOspheric Monitoring Instrument, TROPOMI), whereas that of NO2 ranged from 0.47 (winter, OMI and OMPS) to 0.83 (summer, TROPOMI). GEMS yielded a higher VCD of NO2 than that of OMI and TROPOMI. Based on the sources of O3 and NO2, GEMS observed the maximum VCD at a different time (3–4 h) to that of the ground observations. Overall, GEMS can make observations several times a day and is a potential tool for atmospheric environmental analysis.

Funder

National Institute of Environmental Research

Ministry of Environment of the Republic of Korea

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3