Self-Organization Characteristics of Lunar Regolith Inferred by Yutu-2 Lunar Penetrating Radar

Author:

Zhang XiangORCID,Lv Wenmin,Zhang LeiORCID,Zhang JinhaiORCID,Lin Yangting,Yao Zhenxing

Abstract

Most previous studies tend to simplify the lunar regolith as a homogeneous medium. However, the lunar regolith is not completely homogeneous, because there are weak reflections from the lunar regolith layer. In this study, we examined the weak heterogeneity of the lunar regolith layer using a self-organization model by matching the reflection pattern of both the lunar regolith layer and the top of the ejecta layer. After a series of numerical experiments, synthetic results show great consistency with the observed Chang’E-4 lunar penetrating radar data and provide some constraints on the range of controlling parameters of the exponential self-organization model. The root mean square permittivity perturbation is estimated to be about 3% and the correlation distance is about 5–10 cm. Additionally, the upper layer of ejecta has about 1–2 rocks per square meter, and the rock diameter is about 20–30 cm. These parameters are helpful for further study of structural characteristics and the evolution process of the lunar regolith. The relatively small correlation distance and root mean square perturbation in the regolith indicate that the regolith is mature. The weak reflections within the regolith are more likely to be due to structural changes rather than material composition changes.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3