Yutu-2 radar observation of the lunar regolith heterogeneity at the Chang’E-4 landing site

Author:

Ding ChunyuORCID,Xiong Siting,Li Jing,Su Yan,Huang Shaopeng

Abstract

Context. The lunar penetrating radar (LPR) carried by the Yutu-2 rover performed the first in situ measurement of the subsurface structure and physical properties of the subsurface materials on the far side of the Moon. It provides an unprecedented opportunity to study the formation and evolution of the lunar surface. Aims. This paper aims to quantitatively estimate the heterogeneity of the lunar regolith using the high-frequency Yutu-2 radar observation and constrain the modeling parameters (e.g., autocorrelation length) on a radar simulation. Methods. The heterogeneity of the lunar regolith was quantified by comparing the simulation and observation acquired by the high-frequency Yutu-2 radar within the first 17 lunar days after its landing. The radar simulation was determined by the numerical calculation of the stochastic regolith model. The change in the autocorrelation length to the modeling was derived by calculating the coarseness of the model. Results. The disturbance range of the lunar regolith with a thickness of ~12 m at the Chang’E-4 landing site is constrained to be ~0.20 ± 0.06 m, indicating a high self-similarity. The stochastic model’s spatial disturbance is controlled by the autocorrelation length and is also scaled by the model size, and the radar scattering echo strength decreases with the increase in autocorrelation length. Conclusions. We conclude that the heterogeneity of lunar regolith is positively related to the geological age. The application of the disturbance range at the decimeter scale might provide a valuable reference to assist in interpreting the radar observation data of the Moon (e.g., Arecibo radar, Min-SAR and Mini-RF, and in situ LPR).

Funder

National Natural Science Foundation of China

Opening Fund of the Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences

Shenzhen Municipal Government Investment Project

Shenzhen Scientific Research and Development Funding Program

Youth talent project of the China Association for science and technology

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3