Electrolytic Characteristics of Microhole Array Manufacturing Using Polyacrylamide Electrolyte in 304 Stainless Steel

Author:

He Junfeng1ORCID,Wang Zan1,Zhou Wenjie1,Jian Yue1,Zhou Li2

Affiliation:

1. School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China

2. Interdisciplinary Research Institute, Guangdong Polytechnic Normal University, Guangzhou 510450, China

Abstract

Because of the ease with which oxide films form on its surfaces, stainless steel has strong corrosion resistance and excellent processing performance. Electrochemical machining (ECM) is a flexible process that can create microstructures on stainless steel (SS304); however, with traditional masked ECM, the efficiency and accuracy of microstructure machining are low. Proposed here is the use of a non-Newtonian fluid [polyacrylamide (PAM)] as the electrolyte. To date, there have been few papers on the electrochemical dissolution behavior of stainless-steel micromachining with a non-Newtonian fluid as the electrolyte. The aims of the study reported here were to investigate the electrochemical properties of SS304 with PAM and PAM–NaOH as electrolytes, and to explain their electrochemical corrosion mechanisms. The effects of different electrolytes were compared, and the polarization curves of SS304 in PAM and PAM–NaOH electrolyte solutions with different components were analyzed and compared with that in NaNO3 electrolyte. Then, the effects of the main processing parameters (pulse voltage, frequency, and duty ratio) on the machining performance were investigated in detail. A microhole array was obtained with a good quality comprising an average diameter of 330.11 µm, an average depth of 16.13 µm, and a depth-to-diameter ratio of 0.048. Using PAM to process microstructures on stainless-steel surfaces was shown to be feasible, and experiments indicated that the mixed electrolyte (PAM–NaOH) had not only the physical characteristics of a non-Newtonian fluid but also the advantages of a traditional electrolyte to dissolve processing products, and it effectively improved the processing accuracy of masked ECM for SS304.

Funder

Basic and Applied Basic Research Foundation of Guangdong Provincial

Science and Technology Program of Guangzhou, China

Talent Introduction Project of Guangdong Polytechnic Normal University

Provincial Major Scientific Research Project of Universities in Guangdong Province

Guangdong Enterprise Science and Technology Commissioner Project

Guangdong Colleges and Universities Young Innovative Talents Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3