Discharge Characteristics and Mechanisms of Electrolytic Discharge Processing by Jet Mask

Author:

Chen Chaoda1,Wu Shaofang1,Wu Hao1ORCID,Shan Liang2,Li Kangxing1,Wu Siyang1

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China

2. School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

As a novel microfabrication method, electrochemical discharge machining has remarkable effects on the forming and processing of brittle and hard materials and non-conductive materials, but little research has been done on the electrochemical discharge mode in the jet state. To fulfil the potential of this technology, innovative research on the discharge characteristics and mechanism of electrochemical discharge machining in the jet mask is proposed. A high-speed camera observation experiment was set up to record the process of the jet flow column discharge formation and penetration. Changes in the electric field of the electrolytic jet channel were analysed by simulation software, and the morphology of the machined micro-pits was observed using a microscope. A mathematical derivation of the dielectric electric field in the gas–liquid two-phase jet column reveals the mechanism of discharge channel formation in the jet state. The experiments show that when the processing voltage is 400 V, a stable continuous spark appears, realizing the unique characteristics of a large-gap long-distance discharge and a flat small circle-shaped discharge mark produced at the bottom of the crater. The actual field strength within the bubble of this model obtained by mathematical derivation is approximately 61.5 kV/cm greater than the critical field strength for air bubble breakdown in the standard state, where bubble breakdown occurs in the discharge.

Funder

Guangzhou Higher Education Quality and Reform Project

Key Research Platforms and Projects of Guangdong General Colleges and Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3