Graphene Family Nanomaterials (GFN)-TiO2 for the Photocatalytic Removal of Water and Air Pollutants: Synthesis, Characterization, and Applications

Author:

Lin Chih-Hsien,Chen Wei-HsiangORCID

Abstract

Given the industrial revolutions and resource scarcity, the development of green technologies which aims to conserve resources and reduce the negative impacts of technology on the environment has become a critical issue of concern. One example is heterogeneous photocatalytic degradation. Titanium dioxide (TiO2) has been intensively researched given its low toxicity and photocatalytic effects under ultraviolet (UV) light irradiation. The advantages conferred by the physical and electrochemical properties of graphene family nanomaterials (GFN) have contributed to the combination of GFN and TiO2 as well as the current variety of GFN-TiO2 catalysts that have exhibited improved characteristics such as greater electron transfer and narrower bandgaps for more potential applications, including those under visible light irradiation. In this review, points of view on the intrinsic properties of TiO2, GFNs (pristine graphene, graphene oxide (GO), reduced GO, and graphene quantum dots (GQDs)), and GFN-TiO2 are presented. This review also explains practical synthesis techniques along with perspective characteristics of these TiO2- and/or graphene-based materials. The enhancement of the photocatalytic activity by using GFN-TiO2 and its improved photocatalytic reactions for the treatment of organic, inorganic, and biological pollutants in water and air phases are reported. It is expected that this review can provide insights into the key to optimizing the photocatalytic activity of GFN-TiO2 and possible directions for future development in these fields.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3