Ordered Porous TiO2@C Layer as an Electrocatalyst Support for Improved Stability in PEMFCs

Author:

Liu Gaoyang,Yang Zhaoyi,Wang Xindong,Fang Baizeng

Abstract

Proton exchange membrane fuel cells (PEMFCs) are the most promising clean energy source in the 21st century. In order to achieve a high power density, electrocatalytic performance, and electrochemical stability, an ordered array structure membrane electrode is highly desired. In this paper, a new porous Pt-TiO2@C ordered integrated electrode was prepared and applied to the cathode of a PEMFC. The utilization of the TiO2@C support can significantly decrease the loss of catalyst caused by the oxidation of the carbon from the conventional carbon layer due to the strong interaction of TiO2 and C. Furthermore, the thin carbon layer coated on TiO2 provides the rich active sites for the Pt growth, and the ordered support and catalyst structure reduces the mass transport resistance and improves the stability of the electrode. Due to its unique structural characteristics, the ordered porous Pt-TiO2@C array structure shows an excellent catalytic activity and improved Pt utilization. In addition, the as-developed porous ordered structure exhibits superior stability after 3000 cycles of accelerated durability test, which reveals an electrochemical surface area decay of less than 30%, considerably lower than that (i.e., 80%) observed for the commercial Pt/C.

Funder

National Natural Science Foundation of China

International Communication Program for Young Scientist in USTB

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3