Enhancement of InSe Field-Effect-Transistor Performance against Degradation of InSe Film in Air Environment

Author:

Zhang Yadong,Sun Xiaoting,Jia Kunpeng,Yin HuaxiangORCID,Luo Kun,Yu Jiahan,Wu ZhenhuaORCID

Abstract

The degradation of InSe film and its impact on field effect transistors are investigated. After the exposure to atmospheric environment, 2D InSe flakes produce irreversible degradation that cannot be stopped by the passivation layer of h-BN, causing a rapid decrease for InSe FETs performance, which is attributed to the large number of traps formed by the oxidation of 2D InSe and adsorption to impurities. The residual photoresist in lithography can cause unwanted doping to the material and reduce the performance of the device. To avoid contamination, a high-performance InSe FET is achieved by a using hard shadow mask instead of the lithography process. The high-quality channel surface is manifested by the hysteresis of the transfer characteristic curve. The hysteresis of InSe FET is less than 0.1 V at Vd of 0.2, 0.5, and 1 V. And a high on/off ratio of 1.25 × 108 is achieved, as well relative high Ion of 1.98 × 10−4 A and low SS of 70.4 mV/dec at Vd = 1 V are obtained, demonstrating the potential for InSe high-performance logic device.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3