A Low-Power Hardware Architecture for Real-Time CNN Computing

Author:

Liu Xinyu1,Cao Chenhong1,Duan Shengyu1

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

Abstract

Convolutional neural network (CNN) is widely deployed on edge devices, performing tasks such as objective detection, image recognition and acoustic recognition. However, the limited resources and strict power constraints of edge devices pose a great challenge to applying the computationally intensive CNN models. In addition, for the edge applications with real-time requirements, such as real-time computing (RTC) systems, the computations need to be completed considering the required timing constraint, so it is more difficult to trade off between computational latency and power consumption. In this paper, we propose a low-power CNN accelerator for edge inference of RTC systems, where the computations are operated in a column-wise manner, to realize an immediate computation for the currently available input data. We observe that most computations of some CNN kernels in deep layers can be completed in multiple cycles, while not affecting the overall computational latency. Thus, we present a multi-cycle scheme to conduct the column-wise convolutional operations to reduce the hardware resource and power consumption. We present hardware architecture for the multi-cycle scheme as a domain-specific CNN architecture, which is then implemented in a 65 nm technology. We prove our proposed approach realizes up to 8.45%, 49.41% and 50.64% power reductions for LeNet, AlexNet and VGG16, respectively. The experimental results show that our approach tends to cause a larger power reduction for the CNN models with greater depth, larger kernels and more channels.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3