Universal Local Linear Kernel Estimators in Nonparametric Regression

Author:

Linke YulianaORCID,Borisov IgorORCID,Ruzankin PavelORCID,Kutsenko VladimirORCID,Yarovaya ElenaORCID,Shalnova SvetlanaORCID

Abstract

New local linear estimators are proposed for a wide class of nonparametric regression models. The estimators are uniformly consistent regardless of satisfying traditional conditions of dependence of design elements. The estimators are the solutions of a specially weighted least-squares method. The design can be fixed or random and does not need to meet classical regularity or independence conditions. As an application, several estimators are constructed for the mean of dense functional data. The theoretical results of the study are illustrated by simulations. An example of processing real medical data from the epidemiological cross-sectional study ESSE-RF is included. We compare the new estimators with the estimators best known for such studies.

Funder

State contract of the Sobolev Institute of Mathematics

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference62 articles.

1. Local Polynomial Modelling and Its Applications;Fan,1996

2. Nonlinear Time Series Nonparametric and Parametric Methods;Fan,2003

3. A Distribution-Free Theory of Nonparametric Regression;Györfi,2002

4. Applied Nonparametric Regression;Härdle,1990

5. Nonparametric Regression Analysis of Longitudinal Data;Müller,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3