Affiliation:
1. Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract
Пусть $f_1(t), …, f_n(t)$ - независимые копии некоторого п.н. непрерывного случайного процесса $f(t)$, $t\in[0,1]$, которые наблюдаются в зашумленном варианте. Рассматривается задача непараметрического оценивания функций среднего $\mu(t)
=\mathbf{E}f(t)$ и ковариации $\psi(t,s)=\operatorname{Cov}\{f(t),f(s)\}$ в случае, когда зашумленные значения каждой из копий $f_i(t)$, $i=1,…,n$, наблюдаются в некотором наборе, вообще говоря, случайных временны́х точек (регрессоров). В работе при широких ограничениях на временные точки построены равномерно состоятельные оценки ядерного типа для функций среднего и ковариации как в случае разреженных данных (количество наблюдений для каждой копии случайного процесса равномерно ограничено), так и плотных (количество наблюдений в каждой из $n$ серий растет при $n\to\infty$). В отличие от работ предшественников, предложенные в статье ядерные оценки обладают свойством универсальности относительно структуры временных точек, которые могут быть как фиксированными и необязательно регулярными, так и случайными, при этом необязательно состоящими из независимых или слабо зависимых случайных величин.
Funder
Ministry of Science and Higher Education of the Russian Federation
Publisher
Steklov Mathematical Institute