Enhanced Evaluation Method of Musical Instrument Digital Interface Data based on Random Masking and Seq2Seq Model

Author:

Jiang Zhe,Li Shuyu,Sung YunsickORCID

Abstract

With developments in artificial intelligence (AI), it is possible for novel applications to utilize deep learning to compose music by the format of musical instrument digital interface (MIDI) even without any knowledge of musical theory. The composed music is generally evaluated by human-based Turing test, which is a subjective approach and does not provide any quantitative criteria. Therefore, objective evaluation approaches with many general descriptive parameters are applied to the evaluation of MIDI data while considering MIDI features such as pitch distances, chord rates, tone spans, drum patterns, etc. However, setting several general descriptive parameters manually on large datasets is difficult and has considerable generalization limitations. In this paper, an enhanced evaluation method based on random masking and sequence-to-sequence (Seq2Seq) model is proposed to evaluate MIDI data. An experiment was conducted on real MIDI data, generated MIDI data, and random MIDI data. The bilingual evaluation understudy (BLEU) is a common MIDI data evaluation approach and is used here to evaluate the performance of the proposed method in a comparative study. In the proposed method, the ratio of the average evaluation score of the generated MIDI data to that of the real MIDI data was 31%, while that of BLEU was 79%. The lesser the ratio, the greater the difference between the real MIDI data and generated MIDI data. This implies that the proposed method quantified the gap while accurately identifying real and generated MIDI data.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3