Big Data Analysis and Perturbation using Data Mining Algorithm

Author:

Haoxiang Wang,S Smys

Abstract

The advancement and introduction of computing technologies has proven to be highly effective and has resulted in the production of large amount of data that is to be analyzed. However, there is much concern on the privacy protection of the gathered data which suffers from the possibility of being exploited or exposed to the public. Hence, there are many methods of preserving this information they are not completely scalable or efficient and also have issues with privacy or data utility. Hence this proposed work provides a solution for such issues with an effective perturbation algorithm that uses big data by means of optimal geometric transformation. The proposed work has been examined and tested for accuracy, attack resistance, scalability and efficiency with the help of 5 classification algorithms and 9 datasets. Experimental analysis indicates that the proposed work is more successful in terms of attack resistance, scalability, execution speed and accuracy when compared with other algorithms that are used for privacy preservation.

Publisher

Inventive Research Organization

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mathematical Study of Privacy Algorithms on Big Data Problems;Advances in Web Technologies and Engineering;2024-08-16

2. Corporate Accounting Management Risks Integrating Improved Association Rules and Data Mining;WSEAS TRANSACTIONS ON COMPUTER RESEARCH;2024-07-22

3. A Survey on Privacy of Personal and Non-Personal Data in B5G/6G Networks;ACM Computing Surveys;2024-06-24

4. Machine Automatic Translation Evaluation Model based on Big Data Algorithm;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

5. IoT Privacy-Preserving Data Mining With Dynamic Incentive Mechanism;IEEE Internet of Things Journal;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3