Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process

Author:

Li Qiang,Liu Chang,Guo QingxinORCID

Abstract

In this paper, we present a novel support vector machine learning method for multi-label classification in the steelmaking process. The steelmaking process involves complicated physicochemical reactions. The end-point temperature is the key to the steelmaking process. According to the initial furnace condition information, the end-point temperature can be predicted using a data-driven method. Based on the setting value of the temperature before tapping, multi-scale predicted errors of the end-point temperature can be calculated and divided into different ranges. The quality evaluation problem can be attributed to the multi-label classification problem of molten steel quality. To solve the classification problem, considering that it is difficult to capture nonlinear relationships between the input and output in linear models, we propose a novel support vector machine with robust low-rank learning, which has the characteristics of class imbalance without label correlations; a low-rank constraint is used to deal with high-order label correlations in low-dimensional space. Furthermore, we derive an accelerated proximal gradient algorithm and then extend it to handle the nonlinear multi-label classifiers. To validate the proposed model, experiments are conducted with real data from a practical steelmaking problem. The results show that the proposed model can effectively solve the multi-label classification problem in industrial production. To evaluate the proposed approach as a general classification approach, we test it on multi-label classification benchmark datasets. The results illustrate that the proposed approach performs better than other state-of-the-art approaches across different scenarios.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of the art in applications of machine learning in steelmaking process modeling;International Journal of Minerals, Metallurgy and Materials;2023-11

2. Toward learning steelmaking—A review on machine learning for basic oxygen furnace process;Materials Genome Engineering Advances;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3