Bio-Morphological Reaction of Human Periodontal Ligament Fibroblasts to Different Types of Dentinal Derivates: In Vitro Study

Author:

Bianchi SerenaORCID,Mancini LeonardoORCID,Torge Diana,Cristiano Loredana,Mattei AntonellaORCID,Varvara GiuseppeORCID,Macchiarelli GuidoORCID,Marchetti EnricoORCID,Bernardi SaraORCID

Abstract

Understanding the biological and morphological reactions of human cells towards different dentinal derivate grafting materials is fundamental for choosing the type of dentin for specific clinical situations. This study aimed to evaluate human periodontal ligament fibroblasts (hPLF) cells exposed to different dentinal derivates particles. The study design included the in vitro evaluation of mineralized dentine (SG), deproteinized and demineralized dentine (DDP), and demineralized dentine (TT) as test materials and of deproteinized bovine bone (BIOS) as the positive control material. The materials were kept with the hPLF cell line, and the evaluations were made after 24 h, 72 h, and 7 days of in vitro culture. The evaluated outcomes were proliferation by using XTT assays, the morphological characteristics by light microscopy (LM) and by the use of scanning electron microscopy (SEM), and adhesion by using confocal microscopy (CLSM). Overall, the experimental materials induced a positive response of the hPLFs in terms of proliferation and adhesion. The XTT assay showed the TT, and the SG induced significant growth compared to the negative control at 7 days follow-up. The morphological data supported the XTT assay: the LM observations showed the presence of densely packed cells with a modified shape; the SEM observations allowed the assessment of how fibroblasts exposed to DDP and TT presented cytoplasmatic extensions; and SG and BIOS also presented the thickening of the cellular membrane. The CLMS observations showed the expression of the proliferative marker, as well as and the expression of cytoskeletal elements involved in the adhesion process. In particular, the vinculin and integrin signals were stronger at 72 h, while the actin signal remained constantly expressed in all the follow-up of the sample exposed to SG material. The integrin signal was stronger at 72 h, and the vinculin and actin signals were stronger at 7 days follow-up in the sample exposed to DDP material. The vinculin and integrin signals were stronger at 72 h follow-up in the sample exposed to TT material; vinculin and integrin signals appear stronger at 24 h follow-up in the sample exposed to BIOS material. These data confirmed how dentinal derivates present satisfying biocompatibility and high conductivity and inductivity properties fundamental in the regenerative processes. Furthermore, the knowledge of the effects of the dentin’s degree of mineralization on cellular behavior will help clinicians choose the type of dentine derivates material according to the required clinical situation.

Funder

MUR

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference48 articles.

1. Mechanisms of Bone Resorption in Periodontitis

2. Soft tissue augmentation prior bone volume increase by means of silicon expanders: A case series;Scarano;J. Biol. Regul. Homeost. Agents,2019

3. Esthetic outcome of an immediately placed maxillary anterior single-tooth implant restored with a custom-made zirconia-ceramic abutment and crown: A staged treatment;Traini;Quintessence Int.,2011

4. Ultrashort Implants, Alternative Prosthetic Rehabilitation in Mandibular Atrophies in Fragile Subjects: A Retrospective Study

5. �ALL ON SHORT� PROSTHETIC-IMPLANT SUPPORTED REHABILITATIONS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3