Abstract
AbstractDuring the last decade, pH-sensitive biomaterials containing antibacterial agents have grown exponentially in soft tissue engineering. The aim of this study is to synthesize a biodegradable pH sensitive and antibacterial hydrogel with adjustable mechanical and physical properties for soft tissue engineering. This biodegradable copolymer hydrogel was made of Poly-L-Arginine methacrylate (Poly-L-ArgMA) and different poly (β- amino ester) (PβAE) polymers. PβAE was prepared with four different diacrylate/diamine monomers including; 1.1:1 (PβAE1), 1.5:1 (PβAE1.5), 2:1 (PβAE2), and 3:1 (PβAE3), which was UV cross-linked using dimethoxy phenyl-acetophenone agent. These PβAE were then used for preparation of Poly-L-ArgMA/PβAE polymers and revealed a tunable swelling ratio, depending on the pH conditions. Noticeably, the swelling ratio increased by 1.5 times when the pH decreased from 7.4 to 5.6 in the Poly-L-ArgMA/PβAE1.5 sample. Also, the controllable degradation rate and different mechanical properties were obtained, depending on the PβAE monomer ratio. Noticeably, the tensile strength of the PβAE hydrogel increased from 0.10 ± 0.04 MPa to 2.42 ± 0.3 MPa, when the acrylate/diamine monomer molar ratio increased from 1.1:1 to 3:1. In addition, Poly-L-ArgMA/PβAE samples significantly improved L929 cell viability, attachment and proliferation. Poly-L-ArgMA also enhanced the antibacterial activities of PβAE against both Escherichia coli (~5.1 times) and Staphylococcus aureus (~2.7 times). In summary, the antibacterial and pH-sensitive Poly-L-ArgMA/PβAE1.5 with suitable mechanical, degradation and biological properties could be an appropriate candidate for soft tissue engineering, specifically wound healing applications.
Graphical Abstract
Funder
Isfahan University of Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Bioengineering,Biophysics
Reference71 articles.
1. Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: an overview on soft-tissue engineering. J Control Rel. 2021;332:460–92.
2. Goudarzi ZM, Behzad T, Ghasemi-Mobarakeh L, Kharaziha M. An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. Polymer. 2021;213:123313.
3. Scarano A, Bernardi S, Rastelli C, Mortellaro C, Vittorini P, Falisi G. Soft tissue augmentation by means of silicon expanders prior to bone volume increase: a case series. J Biol Regul Homeost Agents. 2019;33:77–84.
4. Bianchi S, Bernardi S, Simeone D, Torge D, Macchiarelli G, Marchetti E. Proliferation and morphological assessment of human periodontal ligament fibroblast towards bovine pericardium membranes: an in vitro study. Materials. 2022;15:8284.
5. Bianchi S, Mancini L, Torge D, Cristiano L, Mattei A, Varvara G, et al. Bio-morphological reaction of human periodontal ligament fibroblasts to different types of dentinal derivates: in vitro study. Int J Mol Sci. 2021;22:8681.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献