Optimization of Billet Cooling after Continuous Casting Using Genetic Programming—Industrial Study

Author:

Kovačič Miha123,Zupanc Aljaž1,Vertnik Robert12,Župerl Uroš4

Affiliation:

1. ŠTORE STEEL, d.o.o., Research and Development, 3220 Štore, Slovenia

2. Laboratory for Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia

3. College of Industrial Engineering, 3000 Celje, Slovenia

4. Laboratory for Mechatronics, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia

Abstract

ŠTORE STEEL Ltd. is one of the three steel plants in Slovenia. Continuous cast 180 mm × 180 mm billets can undergo cooling to room temperature using a turnover cooling bed. They can also be cooled down under hoods or heat treated to reduce residual stresses. Additional operations of heat treatment from 36 h up to 72 h and cooling of the billets for 24 h, with limited capacities (with only two heat treatment furnaces and only six hoods), drastically influence productivity. Accordingly, the casting must be carefully planned (i.e., the main thing is casting in sequences), while the internal quality of the billets (i.e., the occurrence of inner defects) may be compromised. Also, the stock of billets can increase dramatically. As a result, it was necessary to consider the abandoning of cooling under hoods and heat treatment of billets. Based on the collected scrap data after ultrasonic examination of rolled bars, linear regression and genetic programming were used for prediction of the occurrence of inner defects. Based on modeling results, cooling under hoods and heat treatment of billets were abandoned at the casting of several steel grades. Accordingly, the casting sequences increased, and the stock of billets decreased drastically while the internal quality of the rolled bars remained the same.

Funder

SLOVENIAN RESEARCH AND INNOVATION AGENCY

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3