Effect of Calefaction and Stress Relaxation on Grain Boundaries/Textures of Cu–Cr–Ni Alloy

Author:

Liu Haitao12ORCID,Wang Guojie1,Song Kexing13,Hua Yunxiao1,Liu Yong1ORCID,Huang Tao12

Affiliation:

1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China

3. Henan Academy of Sciences, Zhengzhou 450002, China

Abstract

The Cu–Cr–Ni alloy is a key material for the manufacturing of connectors, which requires excellent resistance to stress relaxation. However, the inherent correlation among microstructure, texture, and properties is still unclear. In this study, we investigated the influence of calefaction and stress relaxation on the grain boundaries (GBs), textures, and properties of the Cu–Cr–Ni alloy. The results showed that calefaction and stress relaxation had opposite effects on GBs and textures. Calefaction led to a decrease in the proportion of low-angle grain boundaries (LAGBs), an increase in the Schmidt factor (SF) value of the grains, and a transition of texture from <111> to <113>. The grains with higher SF values were more susceptible to plastic deformation, which deteriorated the stress relaxation resistance. By comparison, stress relaxation led to an increase in the proportion of LAGBs, a decrease in SF values of the grains, and a transition of texture from <113> to <111> and <001>. After stress relaxation, the variation trends of the GBs and textures were consistent with those of other plastic deformations, indicating that stress relaxation can be verified by the variations in GBs and textures. Our findings provide a theoretical basis for improvements in stress relaxation resistance of the Cu-based alloys used in connector industry.

Funder

Henan Province Young Talent Lifting Engineering Project

National Programs for Science and Technology Development of Henan Province

Zhongyuan Scholars Workstation Project

National Natural Science Foundation of China

China Engineering Science and Technology Development Strategy Henan Research Institute Strategic Consulting Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3