Improving Maraging Steel 350 Machinability via Wiper Insert-Enhanced Face Milling

Author:

Abbas Adel T.1ORCID,Helmy Mohamed O.2ORCID,Alqosaibi Khalid F.1,Parvez Shahid1ORCID,Hasan Ali S.1,Elkaseer Ahmed3ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

2. Department of Mechanical Engineering, Benha Faculty of Engineering, Benha University, Benha 13518, Egypt

3. Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

Despite the prevalent application of 18% Ni maraging steel in critical sectors such as aerospace and automotive due to its unique characteristics, including high ductility, yield strength, and hardenability, its machining presents enormous challenges, categorizing it as a difficult-to-machine material. The cutting tool’s geometry is crucial in machining, significantly affecting chip formation, cutting forces, power consumption, and obtainable surface quality. In particular, wiper insert technology, characterized by its multi-radius design, offers an increased contact area compared to conventional inserts, potentially enhancing the quality of the machined surface. This study explores the effectiveness of wiper inserts in the face-milling of maraging steel 350, conducting a comparative analysis across three distinct machining setups. These setups vary by alternating the number of wiper and conventional inserts within the same cutter, thereby examining the influence of insert configuration on machining outcomes. The research employs a reliable and well-established statistical approach to evaluate how different variables, such as cutting speed and feed rate, affect surface quality, power consumption, and material removal rate (MRR). It also sheds light on the material removal mechanisms facilitated by each type of insert. The findings reveal that incorporating a higher number of wiper inserts significantly enhances the surface finish but concurrently increases power consumption. Thus, the study successfully identifies an optimal set of process parameters that attain a balance between achieving superior surface quality and maintaining energy efficiency in the machining of maraging steel 350. This balance is crucial for optimizing manufacturing processes while adhering to the stringent quality and sustainability standards required in aerospace and automotive manufacturing.

Funder

King Saud University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3