Precision Face Milling of Maraging Steel 350: An Experimental Investigation and Optimization Using Different Machine Learning Techniques

Author:

Abbas Adel T.1ORCID,Helmy Mohamed O.2ORCID,Al-Abduljabbar Abdulhamid A.1ORCID,Soliman Mahmoud S.1ORCID,Hasan Ali S.1,Elkaseer Ahmed3ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

2. Department of Mechanical Engineering, Benha Faculty of Engineering, Benha University, Benha 13511, Egypt

3. Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

Maraging steel, characterized by its superior strength-to-weight ratio, wear resistance, and pressure tolerance, is a material of choice in critical applications, including aerospace and automotive components. However, the machining of this material presents significant challenges due to its inherent properties. This study comprehensively examines the impacts of face milling variables on maraging steel’s surface quality, cutting temperature, energy consumption, and material removal rate (MRR). An experimental analysis was conducted, and the gathered data were utilized for training and testing five machine learning (ML) models: support vector machine (SVM), K-nearest neighbor (KNN), artificial neural network (ANN), random forest, and XGBoost. Each model aimed to predict the outcomes of different machining parameters efficiently. XGBoost emerged as the most effective, delivering an impressive 98% prediction accuracy across small datasets. The study extended into applying a genetic algorithm (GA) for optimizing XGBoost’s hyperparameters, further enhancing the model’s predictive accuracy. The GA was instrumental in multi-objective optimization, considering various responses, including surface roughness and energy consumption. The optimization process evaluated different weighting methods, including equal weights and weights derived from the analytic hierarchy process (AHP) based on expert insights. The findings indicate that the refined XGBoost model, augmented by GA-optimized hyperparameters, provides highly accurate predictions for machining parameters. This outcome holds significant implications for industries engaged in the machining of maraging steel, offering a pathway to optimized operational efficiency, reduced costs, and enhanced product quality amid the material’s machining challenges.

Funder

King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3