Investigations on the Johnson-Cook Constitutive and Damage-Fracture Model Parameters of a Q345C Steel

Author:

Hu Fengquan1,Liu Xin2,Wang Boshi2,Xiang Yong1

Affiliation:

1. School of Materials and Energy, University of electronic Science and Technology of China, Chengdu 610054, China

2. MOE Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China

Abstract

Due to the rapid development of high-speed trains, the service safety of vehicle body materials and structures has become a focal point in transport and impact engineering. Numerical simulations on the collision resistance of vehicle materials and structures are crucial for the safety assessment and optimal structural design of high-speed trains but have not been fully investigated due to the lack of damage model parameters. This study focuses on the Johnson-Cook (J-C) constitutive and damage-fracture models of a typical vehicle material, Q345C steel. A series of mechanical tests are conducted on the Q345C steel, including the quasi-static and dynamic compression/tension tests, quasi-static tension tests at different temperatures, and fracture tests along different stress paths, using the material test system and the split Hopkinson pressure/tension bar. Then, the parameters of the Johnson-Cook constitutive and damage-fracture models are calibrated based on the experimental results. In terms of the damage parameters related to stress paths, a new method of combining experiments and simulations is proposed to obtain the real, local fracture strains of the Q345C steel samples. This method allows the measurements of equivalent plastic strain and stress triaxiality histories under nonlinear stress paths, which are hardly accessible from individual experiments, and facilitates the accurate calibration of stress-path-related damage parameters. In addition, a high-speed plate penetration test is used to validate the J-C parameters, which can be directly implemented in the commercial finite element software Abaqus. The projectile trajectories from the simulation and experiment agree well with each other, demonstrating the reliability of the model parameters for impact scenarios and the efficiency of the experimental procedures utilized for calibration.

Publisher

MDPI AG

Reference52 articles.

1. Operational Safety Reliability of High-Speed Trains under Stochastic Winds;Mengge;Chin. J. Theor. Appl. Mech.,2013

2. Safety Assessment and Risk Control of High-Speed Trains Passenger Transportation;Chunlan;China Saf. Sci. J.,2019

3. Aerodynamic Effect of Wind Barriers and Running Safety of Trains on High-Speed Railway Bridges under Cross Winds;Guo;Wind Struct.,2015

4. Study on Safety Boundary for High-Speed Train Running in Severe Environments;Jin;Int. J. Rail Transp.,2013

5. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety;Cai;Sci. Sin.-Tech.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3