Effect of Storage Conditions on the Stability of Colloidal Silver Solutions Prepared by Biological and Chemical Methods

Author:

Velgosova Oksana1ORCID,Varga Peter1,Ivánová Dana2,Lisnichuk Maksym3ORCID,Hudá Mária1

Affiliation:

1. Institute of Materials and Quality Engineering, Faculty of Materials Metallurgy and Recycling, Technical University of Košice, Letná 9/A, 042 00 Košice, Slovakia

2. Institute of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia

3. Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 040 01 Košice, Slovakia

Abstract

The research aimed to observe the influence of the storage conditions of silver colloidal solutions prepared by biological (green) and chemical methods on their long-term stability. Green methods for reducing and stabilizing silver nanoparticles (AgNPs) use natural substances. The rosemary leaf extract was used for AgNPs synthesis, and prepared nanoparticles were spherical (average size of 12 nm). In the chemical method, commercial chemicals (NaBH4, TSC, PVP, and H2O2) were used, and two colloids were prepared; the first contained spherical nanoparticles with an average size of 8 nm, and the second triangular prisms with an average size of 35 nm. The prepared colloids were stored under four conditions: at room temperature in the light and the dark, and at a temperature of 5 °C (refrigerator) in the light and the dark. The results confirmed the influence of storage conditions on the stability of nanoparticles. Colloids stored at 5 °C in the dark show the best stability. However, differences in stability dependent on the shape of nanoparticles prepared by chemical method were also observed; triangular nanoparticles showed the least stability. Methods such as UV–vis spectrophotometry, TEM, and EDX were used to analyze the nanoparticles before and after storage.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3