Long Short-Term Memory Parameter Optimization Based on Improved Sparrow Search Algorithm for Molten Iron Quality Prediction

Author:

Zhang Ziwen1,Zhang Ruiyao1,Zhou Ping1ORCID

Affiliation:

1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China

Abstract

Blast furnace (BF) ironmaking is a key process in iron and steel production. Because BF ironmaking is a dynamic time series process, it is more appropriate to use a recurrent neural network for modeling. The long short-term memory (LSTM) network is commonly used to model time series data. However, its model performance and generalization ability heavily depend on the parameter configuration. Therefore, it is necessary to study parameter optimization for the LSTM model. The sparrow search algorithm (SSA) holds advantages over traditional optimization algorithms in several aspects, such as no need for prior knowledge, fewer parameters, fast convergence, and high scalability. However, the algorithm still faces some challenges, such as the tendency to become trapped in the local optimum and the imbalance between global search ability and local search ability. Therefore, on the basis of SSA, this study examined the Levy flight strategy, sine search strategy, and step size factor adjustment strategy to improve it. This algorithm, improved by three strategies, is called the improved sparrow search algorithm (ISSA). Then, the ISSA-LSTM model was established. Furthermore, considering the limitations of SSA in dealing with multi-objective problems, the fast non-dominated sorting genetic algorithm (NSGAII) was introduced, and the ISSA-NSGAII model was established. Finally, experimental validation was performed using real blast furnace operation data, which demonstrated the proposed algorithm’s superiority in parameter optimization for the LSTM model and prediction for real industrial data.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3