Research on Molten Iron Quality Prediction Based on Machine Learning

Author:

Liu Ran1ORCID,Gao Zi-Yang1ORCID,Li Hong-Yang1ORCID,Liu Xiao-Jie1,Lv Qing1

Affiliation:

1. College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China

Abstract

The quality of molten iron not only has a significant impact on the strength, toughness, smelting cost and service life of cast iron but also directly affects the satisfaction of users. The establishment of timely and accurate blast furnace molten iron quality prediction models is of great significance for the improvement of the production efficiency of blast furnace. In this paper, Si, S and P content in molten iron is taken as the important index to measure the quality of molten iron, and the 989 sets of production data from a No.1 blast furnace from August to October 2020 are selected as the experimental data source, predicting the quality of molten iron by the I-GWO-CNN-BiLSTM model. First of all, on the basis of the traditional data processing method, the missing data values are classified into correlation data, temporal data, periodic data and manual input data, and random forest, the Lagrangian interpolation method, the KNN algorithm and the SVD algorithm are used to complete them, so as to obtain a more practical data set. Secondly, CNN and BiLSTM models are integrated and I-GWO optimized hyperparameters are used to form the I-GWO-CNN-BiLSTM model, which is used to predict Si, S and P content in molten iron. Then, it is concluded that using the I-GWO-CNN-BiLSTM model to predict the molten iron quality can obtain high prediction accuracy, which can provide data support for the regulation of blast furnace parameters. Finally, the MCMC algorithm is used to analyze the influence of the input variables on the Si, S and P content in molten iron, which helps the steel staff control the quality of molten iron in a timely manner, which is conducive to the smooth running of blast furnace production.

Funder

National Natural Science Foundation of China

Hebei Natural Science Foundation

Hebei Natural Science Foundation Youth Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3