Kinetic and Mechanistic Study on Catalytic Decomposition of Hydrogen Peroxide on Carbon-Nanodots/Graphitic Carbon Nitride Composite

Author:

Liu Zhongda,Shen Qiumiao,Zhou Chunsun,Fang Lijuan,Yang Miao,Xia Tao

Abstract

The metal-free CDots/g-C3N4 composite, normally used as the photocatalyst in H2 generation and organic degradation, can also be applied as an environmental catalyst by in-situ production of strong oxidant hydroxyl radical (HO·) via catalytic decomposition of hydrogen peroxide (H2O2) without light irradiation. In this work, CDots/g-C3N4 composite was synthesized via an electrochemical method preparing CDots followed by the thermal polymerization of urea. Transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), N2 adsorption/desorption isotherm and pore width distribution were carried out for characterization. The intrinsic catalytic performance, including kinetics and thermodynamic, was studied in terms of catalytic decomposition of H2O2 without light irradiation. The second-order rate constant of the reaction was calculated to be (1.42 ± 0.07) × 10−9 m·s−1 and the activation energy was calculated to be (29.05 ± 0.80) kJ·mol−1. Tris(hydroxymethyl) aminomethane (Tris) was selected to probe the produced HO· during the decomposing of H2O2 as well as to buffer the pH of the solution. The composite was shown to be base-catalyzed and the optimal performance was achieved at pH 8.0. A detailed mechanism involving the adsorb-catalyze double reaction site was proposed. Overall, CDots/g-C3N4 composite can be further applied in advanced oxidation technology in the presence of H2O2 and the instinct dynamics and the mechanism can be referred to further applications in related fields.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3