Affiliation:
1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. Micro-Nano Energetic Devices Key Laboratory of MIIT, Nanjing 210094, China
3. Institute of Space Propulsion, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract
The morphology of catalysts in microchannels plays a crucial role in the orbital maneuvering and networking applications of micro/nano satellites using hydrogen peroxide as a unit propellant. In this paper, a microfluidic reaction chip was designed and fabricated to detect the reaction rate of the catalytic decomposition of hydrogen peroxide solution by a microchannel catalytic bed. In addition, a silver thin film prepared by constant-current electroplating was used as a substrate for the microchannel catalyst. The results show that the ratio of surface area to area of silver film and the average particle size of silver particles have a significant positive correlation on the reaction rate of catalytic decomposition, while the thickness, silver content, and surface roughness of the silver film have no significant effect on the reaction rate of catalytic decomposition. The catalytic performance of the microchannel catalytic bed of silver thin film is greatly influenced by the conditions of electroplating, namely, the electroplating temperature (T), time (t), and current (I). And when I = 0.3 mA, t = 180 s, and T = 60 °C, the microchannel catalytic bed of the silver film prepared by electroplating reaches the optimal reaction rate for the catalytic decomposition of hydrogen peroxide solution. This study has the best process parameters for the design and optimization of heterogeneous catalysts applied to microfluidic reactors.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献