Condition Assessment of Joints in Steel Truss Bridges Using a Probabilistic Neural Network and Finite Element Model Updating

Author:

Zhan Jiawang,Wang ChuangORCID,Fang Zhiheng

Abstract

The condition of joints in steel truss bridges is critical to railway operational safety. The available methods for the quantitative assessment of different types of joint damage are, however, very limited. This paper numerically investigates the feasibility of using a probabilistic neural network (PNN) and a finite element (FE) model updating technique to assess the condition of joints in steel truss bridges. A two-step identification procedure is developed to achieve damage localization and severity assessment. A series of FE models with single or multiple damages are simulated to generate the training and testing data samples and validate the effectiveness of the proposed approach. The influence of noise on the identification accuracy is also evaluated. The results show that the change rate of modal curvature (CRMC) can be used as a damage-sensitive input of the PNN and the accuracy of preliminary damage localization can exceed 90% when suitable training patterns are utilized. Damaged members can be localized in the correct substructure even with noise contamination. The FE model updating method used can effectively quantify the joint deterioration severity and is robust to noise.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. Numerical investigation of collapse of the Minnesota I-35W bridge

2. National Transportation Safety Boardhttp://www.dot.state.mn.us/i35wbridge/pdf/ntsb-report.pdf

3. National Bridge. Inspection Standards,2004

4. Detection of High-Strength Bolts Looseness Using Lead Zirconate Titanate Due to Wavelet Packet Analysis;Jiang,2018

5. Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3