Author:
Pal Joy,Sikdar Shirsendu,Banerjee Sauvik,Banerji Pradipta
Abstract
This research paper presents a novel structural health monitoring strategy based on a hybrid machine learning and finite element model updating method for the health monitoring of bolted connections in steel planer frame structures using vibration data. Towards this, a support vector machine model is trained with the discriminative features obtained from time history data, and those features are used to distinguish between damaged and undamaged joints. An FE model of the planer frame is considered where the fixity factor (FF) of a joint is modeled with rational springs and the FF of the spring is assumed as the severity level of loosening bolts. The Cat Swarm Optimization technique is further applied to update the FE model to calculate the fixity factors of damaged joints. Initially, the method is applied to a laboratory-based experimental model of a single-story planer frame structure and later extended to a pseudo-numerical four-story planer frame structure. The results show that the method successfully localizes the damaged joints and estimates their fixity factors.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献