An Automated Hemispherical Scanner for Monitoring the Leaf Area Index of Forest Canopies

Author:

Wen Yibo,Zhuang LinlanORCID,Wang Hezhi,Hu TongxinORCID,Fan Wenyi

Abstract

The leaf area index (LAI) is an important structural parameter of plant canopies used in terrestrial biosphere models. Optical methods are commonly used for measuring LAI due to their non-destructive nature, convenience, and rapidity. In the present study, a novel instrument, named the Automated Hemispherical Scanner (AHS), was developed to measure plant area index (PAI) for monitoring daily changes in LAI in forest ecosystems. In the AHS, an optical sensor driven by a pair of servomotors is used to observe hemispherical light transmission continuously at adjustable intervals, and a blue filter is used to reduce the multiple scattering effect of light on the measured transmission. A set of algorithms was developed to screen the direct radiation transmitted through the canopy and to compute the transmissions from the diffuse radiation at seven zenith (0–60) and seven azimuth (0–150) angles for calculating PAI. Field experiments were conducted to verify the reliability of the AHS in three forests of Northeast China against an existing instrument named the LAI-2200 Plant Canopy Analyzer. The PAI values obtained using the AHS agreed well (R2 = 0.927, root mean square error = 0.41) with those from the LAI-2200. Since both instruments use the same gap fraction theory for calculating the PAI from diffuse radiation transmissions obtained from multiple angles, the agreement of these two instruments means that the AHS can reliably measure the transmittance of diffuse radiation and the theory has been implemented correctly. Compared with LAI-2200, the AHS has the advantage of automated and continuous measurements, and therefore it is suitable for monitoring variations in PAI over extended periods, such as the whole growing season. Compared with widely used digital photographic techniques, the AHS also avoids the requirement of determining a suitable photographic exposure, which is often problematic in the field with variable sky conditions. With these advantages, the AHS could be deployed in forest growth monitoring networks.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3