Continuous Leaf Area Index (LAI) Observation in Forests: Validation, Application, and Improvement of LAI-NOS

Author:

Gao Zhentao1,Chen Yunping1ORCID,Zhang Zhengjian2ORCID,Duan Tianxin1,Chen Juncheng1,Li Ainong2

Affiliation:

1. School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West High-Tech Zone, Chengdu 611731, China

2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu 610041, China

Abstract

The leaf area index (LAI) is one of the core parameters reflecting the growth status of vegetation. The continuous long-term observation of the LAI is key when assessing the dynamic changes in the energy exchange of ecosystems and the vegetation’s response indicators to climate change. The errors brought about by non-standard operations in manual LAI measurements hinder the further research utilization of this parameter. The long-term automatic LAI observation network is helpful in reducing errors from manual measurements. To further test the applicability of automatic LAI observation instruments in forest environments, this study carried out comparative validation research of the LAI-NOS (LAI automatic network observation system) at the Wanglang Mountain Ecological Remote Sensing Comprehensive Observation Station, China, comparing it with the results measured by the LAI-2200 Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA), the LAI-probe handheld instrument, and a fisheye lens digital camera (DHP method). Instead of using the original “smoothest window” method, a new method, the “sunrise–sunset” method, is used to extract daily LAI-NOS LAI, and the corresponding confidence level is used to filter the data. The results of the data analysis indicate the following: LAI-NOS has a high data stability. The automatically acquired daily data between two consecutive days has a small deviation and significant correlations. Single-angle/multi-angle LAI measurement results of the LAI-NOS have good correlations with the LAI-2200 (R2 = 0.512/R2 = 0.652), the LAI-probe (R2 = 0.692/R2 = 0.619), and the DHP method (R2 = 0.501/R2 = 0.394). The daily LAI obtained from the improved method, when compared to the original method, both show the same vegetation growth trend. However, the improved method has a smaller dispersion. This study confirms the stability and accuracy of automatic observation instruments in mountainous forests, demonstrating the distinct advantages of automatic measurement instruments in the long-term ground observation of LAIs.

Funder

National Key Research and Development Program of China

Sichuan Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3