Abstract
Satellite images are always partitioned into regular patches with smaller sizes and then individually fed into deep neural networks (DNNs) for semantic segmentation. The underlying assumption is that these images are independent of one another in terms of geographic spatial information. However, it is well known that many land-cover or land-use categories share common regional characteristics within a certain spatial scale. For example, the style of buildings may change from one city or country to another. In this paper, we explore some deep learning approaches integrated with geospatial hash codes to improve the semantic segmentation results of satellite images. Specifically, the geographic coordinates of satellite images are encoded into a string of binary codes using the geohash method. Then, the binary codes of the geographic coordinates are fed into the deep neural network using three different methods in order to enhance the semantic segmentation ability of the deep neural network for satellite images. Experiments on three datasets demonstrate the effectiveness of embedding geographic coordinates into the neural networks. Our method yields a significant improvement over previous methods that do not use geospatial information.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
General Earth and Planetary Sciences
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献