An Automatic Method to Detect Lake Ice Phenology Using MODIS Daily Temperature Imagery

Author:

Zhang XinORCID,Wang KaicunORCID,Kirillin GeorgiyORCID

Abstract

Lake ice phenology is a climate-sensitive indicator. However, ground-based monitoring suffers from the limitations of human vision and the difficulty of its implementation in harsh environments. Remote sensing provides great potential to detect lake ice phenology. In this study, a new automated method was developed to extract lake ice phenology parameters by capturing the temporal pattern of the transitional water/ice phase using a parameterized time function. The method is based on Moderate-Resolution Imaging Spectroradiometer (MODIS) daily temperature products, which have unique potential for monitoring lake ice cover as a result of providing four observations per day at 1 km spatial resolution from 2002 to 2016. Three seasonally ice-covered lakes with different characteristics in different climate regions were selected to test the method during the period of 2002–2016. The temporal pattern of water/ice transition phase was determined on the basis of unfrozen water cover fraction extracted from the MODIS daily temperature data, and was compared with the MODIS snow and reflectance products and Landsat images. A good agreement with an R2 of above 0.8 was found when compared with the MODIS snow product. The annual variation of extracted ice phenology dates showed good consistency with the MODIS reflectance and AMSR-E/2 products. The approach was then applied to nine seasonally ice-covered lakes in northern China from 2002 to 2016. The strongest tendency towards a later freeze-up start date was revealed in Lake Qinghai (6.31 days/10 yr) among the lakes in Tibetan plateau, and the break-up start and end dates rapidly shifted towards earlier dates in Lake Hulun (−3.73 days/10 yr; −5.02 days/10 yr). The method is suitable for estimating and monitoring ice phenology on different types of lakes over large scales and has a strong potential to provide valuable information on the responses of ice processes to climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3