Coordination of Multiple Flexible Resources Considering Virtual Power Plants and Emergency Frequency Control

Author:

Xue Jingrun1,Cao Yongji12,Shi Xiaohan1,Zhang Zhen2,Ma Ruicong1,Zhang Jian1

Affiliation:

1. Key Laboratory of Power System Intelligent Dispatch and Control of the Ministry of Education, Shandong University, Jinan 250061, China

2. Academy of Intelligent Innovation, Shandong University, Jinan 250101, China

Abstract

High-voltage direct current (HVDC) blocking disturbance leads to large power losses in the receiving-end power grid, and the event-driven emergency frequency control (EFC) is an important measure to prevent large frequency deviation. By aggregating controllable distributed energy resources (DERs) on the demand side, a virtual power plant (VPP) could quickly reduce its power and can be a new fast response resource for EFC. Considering both the VPP and the traditional control resources, this paper proposes an optimized EFC strategy coordinating multiple resources for the receiving-end power grid with multi-infeed HVDC. The approximate aggregation model of the VPP response process is constructed, based on which the EFC strategy, aiming at minimizing the total control cost while meeting constraints on rotor angle stability and frequency deviation security, is proposed. The electromechanical transient simulation combined with particle swarm optimization (PSO) is utilized to solve the model, and parallel computation is utilized to accelerate the solving process. The effectiveness of the proposed EFC strategy is verified by a provincial receiving-end power grid with multi-infeed HVDC. The detailed simulation results show that VPP could dramatically reduce the control cost of EFC while maintaining the same stability margin.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3