Power System State Estimation Approach Considering Transmission Line Temperature

Author:

Xu Qingwen,Zhang HengxuORCID,Cao YongjiORCID,Qin HaoORCID,Gao Zhimin

Abstract

The transmission line parameters vary with the change of temperature, which has a significant impact on power system state estimation (SE). Based on the theory of electro-thermal coordination (ETC), this paper proposes two ETC-SE approaches with the consideration of transmission line temperature. The heat balance equation (HBE) is combined with the conventional weighted least square SE for establishing an ETC-SE model. Moreover, an augmented Jacobian ETC-SE approach is developed by integrating the HBE into pseudo measurements and the line temperature into state vectors. The Jacobian matrix is augmented correspondingly and the partial differential coefficients of measurements to line temperature are provided, which enables to calculate line temperature and voltage phasors simultaneously. Furthermore, in order to accelerate the solving process, an improved two-step ETC-SE algorithm is proposed, in which the SE and temperature estimation are decoupled and solved via alternate iteration. The effectiveness of the proposed ETC-SE approaches is verified by the IEEE 14-, 39-, and 118-bus systems. The results show that the proposed ETC-SE approach is effective to reduce the calculation errors and possesses good convergence performance with varying environmental circumstances and ill-conditioned branches.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3