Affiliation:
1. Centre for Advanced Manufacturing, University of Technology Sydney, Broadway, NSW 2007, Australia
2. European Astronaut Centre, European Space Agency, Linder Höhe, D-51147 Cologne, Germany
Abstract
A feasibility study is presented exploring the possibility of using thermoelectric devices for the thermal control of CubeSat on-board electronics. A simple thermoelectric architecture is devised and an empirical model for how such a system would perform is constructed, using the performance data of a commercially available thermoelectric module. This is used to calculate the temperature to which the system could cool a computer chip, as a function of thermal resistance and heat rejection. As a baseline scenario, the temperature of the system without the thermoelectric device is compared and the benefit, or otherwise, of using a thermoelectric module is calculated. Analysis shows that in some circumstances introducing a thermoelectric device would actually increase the temperature of the electronics being cooled. This is most common when the quantity of heat being removed, or the thermal resistance of the system, is high. Nevertheless, thermoelectric cooling is beneficial for a range of conditions, such as for cooling the computer chip below ambient temperature, however a good quality radiator is required. This constraint could undermine the thermoelectric device’s potential benefit in many cases, due to the need for an unrealistically large radiator.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献