Research on Cutting Temperature of GH4169 Turning with Micro-Textured Tools

Author:

Feng Xinmin1,Fan Xiwen1,Hu Jingshu1,Wei Jiaxuan1

Affiliation:

1. Key Laboratory of Advanced Manufacturing Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China

Abstract

The GH4169 superalloy has the characteristics of high strength, strong thermal stability, large specific heat capacity, small thermal conductivity, etc., but it is also a typical hard-to-cut material. When cutting this material with ordinary cutting tools, the cutting force is large, and the cutting temperature is high, which leads to severe tool wear and short service life. In order to improve the performance of tools when cutting GH4169, reduce the cutting temperature, and extend the service life of the tool, micro-textured tools were used to cut GH4169 in spray cooling. The effects of micro-texture morphology and dimensional parameters on cutting temperature were analyzed. Firstly, tools with micro-textures of five different morphologies were designed near the nose on the rake face of the cemented carbide tools. The three-dimensional cutting models of the micro-textured tools with different morphologies were established by using ABAQUS, and a simulation analysis was carried out. Compared with the non-textured tools, the micro-texture morphology with the lowest cutting temperature was selected according to the simulation results of the cutting temperature. Secondly, based on the optimized morphology, tools with micro-textures of different size parameters were designed. When cutting GH4169, the cutting temperature of the tools was simulated and analyzed, and the size parameters of the micro-textured tools with the lowest cutting temperature were selected as well. Finally, the designed micro-textured tools were processed and applied in cutting experiments. The simulation model was verified in the experiments, and the influence of size parameters of micro-textures on the cutting temperature was analyzed. This paper provides a theoretical reference and basis for cutting GH4169 and the design and application of micro-textured tools.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Machining characteristics of cutting Inconel 718 with carbide tool;Hao;Int. J. Mater. Prod. Technol.,2019

2. Experimental research on turning of superalloy GH4169 under high pressure cooling condition;Shi;Integr. Ferroelectr.,2020

3. Investigation of surface damage and roughness for nickel-based superalloy GH4169 under hard turning processing;Pan;Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.,2020

4. Experimental and simulation of low-temperature cutting of nickel based alloy Inconel 718 using liquid nitrogen cooling;Li;J. Mech. Eng.,2020

5. Experimental study of the wear behavior of PCBN Inserts during cutting of GH4169 superalloys under high-pressure cooling;Li;Int. J. Adv. Manuf. Technol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3