Distribution Characteristics of the Geoelectric Field in Waste Dump Slopes during the Evolution of Instability Sources under Rainfall Conditions

Author:

Kang Ensheng1ORCID,Meng Haidong1,Zhao Zexi2ORCID,Zhao Zihao1

Affiliation:

1. School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. College of Resources and Civil Engineering, Northeastern University, Shengyang 110057, China

Abstract

To study the evolution of geological hazard sources of waste dump slopes under rainfall conditions, a physical model of a rainfall-affected slope was designed. The apparent resistivity of the slope rock and soil mass at different rainfall times was measured via the high-density resistivity method, and the formation process of internal disaster sources of the rainfall-affected slope was obtained. The variation characteristics of the resistivity of the rain-affected slope were analyzed when it had a weak surface and crack development. Based on the three-water model and Maxwell conductivity formula, the evolution process of geological hazard sources of the rainfall-affected slope was summarized. A resistivity response mechanism equation for rainfall-induced slope hazard sources was derived and compared to the Archie formula, verifying the model rationality. The test results showed that the behavior of the rainfall-affected slope conforms to the saturated–unsaturated dynamic cycle process. The apparent resistivity was positively correlated with the development of slope pores and cracks and negatively correlated with the water content in the slope. The apparent resistivity increased during fracture development and decreased during water seepage. In the slope failure and disaster process, the apparent resistivity varies under the coupling effect of crack development and water seepage. During the formation of geological hazard sources, the apparent resistivity abruptly changes and fluctuates. Therefore, according to the abrupt changes and abnormal fluctuations in the apparent resistivity detected, the development of geological hazard sources of slopes can be determined.

Funder

University fund of Inner Mongolia Autonomous Region of China

China’s national science and technology innovation fund for College Students

Inner Mongolia Natural Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3