Affiliation:
1. School of General Education, Shanxi Institute of Science and Technology, Jincheng 048000, China
2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract
In longwall coal mining, significant deformation of small-pillar roadways presents challenges for the safe and efficient retreat of mining panels. Non-penetrating directional pre-splitting alters the roof structure of these roadways and effectively manages their stability under high stress during mining operations. In this study, a three-dimensional experimental model for the non-penetrating pre-splitting of small-coal-pillar roadway roofs was established, the apparent resistivity change in the rock layer during mining of the working face was determined, the propagation law of high-frequency electromagnetic waves in the overlying rock was studied, and the stress distribution law of the surrounding rock was investigated. After non-penetrating pre-splitting in the roof, the apparent resistivity change rate of the overlying rock increased and the electromagnetic waveform exhibited scattering and diffraction, forming a short cantilever beam. After mining, the stress in the adjacent mining panel gateway reduced, resulting in a pressure relief effect on the surrounding rock. These findings were further validated through field application, where the overall deformation of the roadway was reduced by 57%. The research results shed light on the management of roof control in small-coal-pillar roadways and the rational determination of non-penetrating pre-splitting parameters.
Funder
Fundamental Research Program Youth Project of Shanxi Province