Glass Fillers in Three Different Forms Used as Reinforcement Agents of Polylactic Acid in Material Extrusion Additive Manufacturing

Author:

Vidakis Nectarios1,Petousis Markos1ORCID,Mountakis Nikolaos1ORCID,Papadakis Vassilis2,Charou Chrysa1ORCID,Rousos Vasilis1,Bastas Pavlos1

Affiliation:

1. Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece

2. Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece

Abstract

The industrial demand for functional filaments made of bio-sourced, biocompatible, biodegradable, and/or recyclable polymers and composites for material extrusion (MEX) 3D printing is continuously growing. Polylactic acid (PLA), the most popular filament, combines such properties, yet its reinforcement with low-cost, inert, and/or recycled fillers remains challenging. Herein, glass in three different micro/nano-forms was the reinforcement agent in PLA. Three different experimental tiers were elaborated by producing composite filaments with glass in powder, beads, and flake forms in various loadings to optimize the concentrations. A thermomechanical process, i.e., melt filament extrusion, was exploited. The composites were evaluated for their thermal degradation stability and composition using thermogravimetric analysis and Raman. MEX 3D printing was used to produce tensile, flexural, impact, and microhardness specimens, to quantitatively evaluate their mechanical response. Field emission scanning electron microscopy evaluation and fractography were carried out to depict fracture patterns of the specimens after their tests. All three glass types induced impressive reinforcement effects (up to 60% in flexural loading), especially in the flake form. The impact of the additional process cost through glass fillers implementation was also assessed, indicating that such composites are cost-effective.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3