Dimensional Accuracy and Mechanical Properties of Chopped Carbon Reinforced Polymers Produced by Material Extrusion Additive Manufacturing

Author:

Yasa Evren,Ersoy Kıvılcım

Abstract

Fused Filament Fabrication (FFF), classified under material extrusion additive manufacturing technologies, is a widely used method for fabricating thermoplastic parts with high geometrical complexity. To improve the mechanical properties of pure thermoplastic materials, the polymeric matrix may be reinforced by different materials such as carbon fibers. FFF is an advantageous process for producing polymer matrix composites because of its low cost of investment, high speed and simplicity as well as the possibility to use multiple nozzles with different materials. In this study, the aim was to investigate the dimensional accuracy and mechanical properties of chopped carbon-fiber-reinforced tough nylon produced by the FFF process. The dimensional accuracy and manufacturability limits of the process are evaluated using benchmark geometries as well as process-inherent effects like stair-stepping effect. The hardness and tensile properties of produced specimens in comparison to tough nylon without any reinforcement, as well as continuous carbon-reinforced specimens, were presented by taking different build directions and various infill ratios. The fracture surfaces of tensile specimens were observed using a Scanning Electron Microscope (SEM). The test results showed that there was a severe level of anisotropy in the mechanical properties, especially the modulus of elasticity, due to the insufficient fusion between deposited layers in the build direction. Moreover, continuous carbon-reinforced specimens exhibited very high levels of tensile strength and modulus of elasticity whereas the highest elongation was achieved by tough nylon without reinforcement. The failure mechanisms were found to be inter-layer porosity between successive tracks, as well as fiber pull out.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3