Affiliation:
1. Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China
2. School of Mechanical & Electrical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
Abstract
Carbon-based nano-conductive silicone rubber is a kind of composite conductive polymer material that has good electrical and thermal conductivities and high magnetic flux. It has good application prospects for replacing most traditional conductive materials, but its mechanical and tensile strengths are poor, which limit its applications. In this study, carbon fiber (CF), graphene (G) and carbon nanotubes (CNT) are used as fillers to prepare carbon-based nano-conductive silicone rubber via solution blending, and the preparation methods and properties are analyzed. The results show that when the carbon fiber content is 7.5 wt%, the volume resistivity of carbon fiber conductive silicone rubber is 9.5 × 104 Ω·cm, the surface resistance is 2.88 × 105 Ω, and the tensile strength reaches 2.12 Mpa. When the graphene content is 5.5 wt%, the volume resistivity of graphene conductive silicone rubber is 8.7 × 104 Ω·cm, and the surface resistance is 2.4 × 106 Ω. When the carbon nanotube content is 1.25 wt%, the volume resistivity of carbon nanotube conductive silicone rubber is 1.34 × 104 Ω·cm, and the surface resistance is 1.0 × 106 Ω. The three conductive nano-fillers in the blended carbon nano-conductive silicone rubber form a stable three-dimensional composite conductive network, which enhances the conductivity and stability. When the tensile rate is 520%, the resistance of the blended rubber increases from 2.69 × 103 to 9.66 × 104 Ω, and the rubber maintains good resilience and tensile sensitivity under repeated stretching. The results show that the proposed blended carbon nano-conductive silicone rubber has good properties and great application prospects, verifying the employed research method and showing the credibility of the research results.
Funder
The National Science Foundation of China of China
The Scientific Research Plan of The National High-End Textile Equipment Research Base
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献