Systematic Investigation of the Degradation Properties of Nitrile-Butadiene Rubber/Polyamide Elastomer/Single-Walled Carbon Nanotube Composites in Thermo-Oxidative and Hot Oil Environments

Author:

Liu Guangyong1ORCID,Wang Huiyu1,Ren Tianli2,Chen Yuwei1ORCID,Liu Susu1

Affiliation:

1. Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, China

2. Mississippi Polymer Institute, University of Southern Mississippi, Hattiesburg, MS 39406, USA

Abstract

The physical blending method was used in order to prepare nitrile-butadiene rubber/polyamide elastomer/single-walled carbon nanotube (NBR/PAE/SWCNT) composites with better thermal-oxidative aging resistance. The interactions between SWCNTs and NBR/PAE were characterized using the Moving Die Rheometer 2000 (MDR 2000), rheological behavior tests, the equilibrium swelling method, and mechanical property tests. The 100% constant tensile stress and hardness of NBR/PAE/SWCNT composites increased from 2.59 MPa to 4.14 MPa and from 62 Shore A to 69 Shore A, respectively, and the elongation decreased from 421% to 355% with increasing SWCNT content. NBR/PAE/SWCNT composites had improved thermal-oxidative aging resistance due to better interactions between SWCNTs and NBR/PAE. During the aging process, the tensile strength and elongation at break decreased with the increase in aging time compared to the unaged samples, and the constant tensile stress gradually increased. There was a more significant difference in the degradation of mechanical properties when aged in a variety of oils. The 100% constant tensile stress of NBR/PAE/SWCNT composites aged in IRM 903 gradually increased with aging time while it gradually decreased in biodiesel. The swelling index gradually increased with increasing SWCNT content. Interestingly, the swelling index of the composites in cyclohexanone decreased with the increase in SWCNT content. The reasons leading to different swelling behaviors when immersed in different kinds of liquids were investigated using the Hansen solubility parameter (HSP) method, which provides an excellent guide for the application of some oil-resistant products.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3