Estimating Liquefaction Susceptibility Using Machine Learning Algorithms with a Case of Metro Manila, Philippines

Author:

Galupino Joenel1,Dungca Jonathan1ORCID

Affiliation:

1. Department of Civil Engineering, De La Salle University, Manila 1004, Philippines

Abstract

Soil liquefaction is a phenomenon that can occur when soil loses strength and behaves like a liquid during an earthquake. A site investigation is essential for determining a site’s susceptibility to liquefaction, and these investigations frequently generate project-specific geotechnical reports. However, many of these reports are frequently stored unused after construction projects are completed. This study suggests that when these unused reports are consolidated and integrated, they can provide valuable information for identifying potential challenges, such as liquefaction. The study evaluates the susceptibility of liquefaction by considering several geotechnical factors modeled by machine learning algorithms. The study estimated site-specific characteristics, such as ground elevation, groundwater table elevation, SPT N-value, soil type, and fines content. Using a calibrated model represented by an equation, the investigation determined several soil properties, including the unit weight and peak ground acceleration (PGA). The study estimated PGA using a linear model, which revealed a significant positive correlation (R2 = 0.89) between PGA, earthquake magnitude, and distance from the seismic source. On the Marikina West Valley Fault, the study also assessed the liquefaction hazard for an anticipated 7.5 M and delineated a map that was validated by prior studies.

Funder

Department of Science and Technology Grants-in-Aid (DOST-GIA) GEMMMS Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3