Spatial Azimuthal Misalignment Characteristics of High-Temperature Superconducting Wireless Power Transmission Systems

Author:

Yan Zhichao1,Zou Tanyuan1,Chen Mingyue1ORCID,Zhou Difan1,Zhao Suchuan1,Guo Yanqun1,Cai Chuanbing1

Affiliation:

1. Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China

Abstract

Magnetically coupled resonant wireless power transmission technology (WPT) based on high-temperature superconducting (HTS) coils has gained wide popularity due to its low impedance and high-quality factor Q value characteristics. This technology has greatly improved the energy transfer performance of wireless power transmission (WPT) systems. However, practical applications of conventional WPT, such as wireless charging of autonomous underwater vehicles at mooring points, often encounter spatial misalignment issues due to the complex ocean environment and ocean currents. Nonetheless, few studies have investigated the spatial misalignment of HTS WPT systems, particularly the angular misalignment. This paper presents a solution to address this problem by constructing magnetically coupled resonant wireless energy transmission systems based on HTS coils and copper coils. The study analyzes the relationship between the transmission efficiency of the WPT system and the received power of the load with respect to the spatial orientation of the coil. The performance of the superconducting coil and copper coil WPT systems is compared. The experimental results demonstrate that, under the same spatially misaligned conditions, the WPT system using HTS coils can significantly improve the transmission efficiency and load power compared to the conventional copper WPT system. Moreover, simultaneous adjustment of the lateral misalignment distance and different orientation deflection angles can improve the transmission efficiency and smooth load output power of the high-temperature superconducting WPT system.

Funder

Chinese Academy of Sciences

National Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3