Modeling and Transmission Characteristics Study of a Resonant Underwater Wireless Electric Power Transmission System

Author:

Hu Qiong12,Qin Yu12,Li Zhenfu12,Zheng Meiling12,Huang Junqiang12,Ou Yujia12

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. State Key Laboratory of Deep Sea Mineral Resources Development and Utilization Technology, Changsha 410012, China

Abstract

Compared to the traditional wet-mate underwater power supply method, Magnetic Coupling Resonant Wireless Power Transfer (MCR-WPT) technology boasts advantages such as excellent insulation, high safety, and convenient operation, showing promising application prospects in the field of power supply for underwater vehicles and other mobile underwater devices. In order to explore the transmission characteristics of this technology underwater, this article first establishes a traditional mathematical model, and then modifies the underwater model through analysis of changes in coil self-inductance and mutual inductance, as well as the impact of eddy current losses. Using the modified mathematical model of the underwater MCR-WPT system, the transmission characteristics are analyzed, and simulations and experimental validations are performed using MATLAB R2022a software. In the study of frequency characteristics, it is found that the system operates optimally when both ends of the circuit work at the resonant state; that is, when finput = fresonance = 100 kHz, the output performance is at its best, and the optimal resonant frequency significantly improves power and transmission efficiency. When the input frequency is less than 87.3 kHz or greater than 122.9 kHz, the output power decreases to less than half of the maximum power. In the investigation of load effects, the optimal load for maximizing system output power was identified, but the load that maximizes transmission efficiency is different from this optimal load. This study provides strong theoretical support and guidance for improving the performance of underwater wireless power transmission systems.

Funder

Natural Science Foundation of Hunan Province

National Key Research and Development Project of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3