Path following for Autonomous Ground Vehicle Using DDPG Algorithm: A Reinforcement Learning Approach

Author:

Cao Yu1ORCID,Ni Kan1,Jiang Xiongwen1,Kuroiwa Taiga1,Zhang Haohao2,Kawaguchi Takahiro1ORCID,Hashimoto Seiji1,Jiang Wei3ORCID

Affiliation:

1. Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan

2. Ryomo Systems Co., Ltd., Ota 373-0853, Japan

3. Department of Electronic Engineering, Yangzhou University, Yangzhou 225012, China

Abstract

The potential of autonomous driving technology to revolutionize the transportation industry has attracted significant attention. Path following, a fundamental task in autonomous driving, involves accurately and safely guiding a vehicle along a specified path. Conventional path-following methods often rely on rule-based or parameter-tuning aspects, which may not be adaptable to complex and dynamic scenarios. Reinforcement learning (RL) has emerged as a promising approach that can learn effective control policies from experience without prior knowledge of system dynamics. This paper investigates the effectiveness of the Deep Deterministic Policy Gradient (DDPG) algorithm for steering control in ground vehicle path following. The algorithm quickly converges and the trained agent achieves stable and fast path following, outperforming three baseline methods. Additionally, the agent achieves smooth control without excessive actions. These results validate the proposed approach’s effectiveness, which could contribute to the development of autonomous driving technology.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3