A Malware Detection and Extraction Method for the Related Information Using the ViT Attention Mechanism on Android Operating System

Author:

Jo Jeonggeun1ORCID,Cho Jaeik2ORCID,Moon Jongsub1ORCID

Affiliation:

1. Department of Information Security, Korea University, Seoul 02841, Republic of Korea

2. Department of Computer Science, Lewis University, Romeoville, IL 60446, USA

Abstract

Artificial intelligence (AI) is increasingly being utilized in cybersecurity, particularly for detecting malicious applications. However, the black-box nature of AI models presents a significant challenge. This lack of transparency makes it difficult to understand and trust the results. In order to address this, it is necessary to incorporate explainability into the detection model. There is insufficient research to provide reasons why applications are detected as malicious or explain their behavior. In this paper, we propose a method of a Vision Transformer(ViT)-based malware detection model and malicious behavior extraction using an attention map to achieve high detection accuracy and high interpretability. Malware detection uses a ViT-based model, which takes an image as input. ViT offers a significant advantage for image detection tasks by leveraging attention mechanisms, enabling robust interpretation and understanding of the intricate patterns within the images. The image is converted from an application. An attention map is generated with attention values generated during the detection process. The attention map is used to identify factors that the model deems important. Class and method names are extracted and provided based on the identified factors. The performance of the detection was validated using real-world datasets. The malware detection accuracy was 80.27%, which is a high level of accuracy compared to other models used for image-based malware detection. The interpretability was measured in the same way as the F1-score, resulting in an interpretability score of 0.70. This score is superior to existing interpretable machine learning (ML)-based methods, such as Drebin, LIME, and XMal. By analyzing malicious applications, we also confirmed that the extracted classes and methods are related to malicious behavior. With the proposed method, security experts can understand the reason behind the model’s detection and the behavior of malicious applications. Given the growing importance of explainable artificial intelligence in cybersecurity, this method is expected to make a significant contribution to this field.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualising Static Features and Classifying Android Malware Using a Convolutional Neural Network Approach;Applied Sciences;2024-05-31

2. Unveiling the Depths of Explainable AI;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-03-18

3. Enhancing android malware detection explainability through function call graph APIs;Journal of Information Security and Applications;2024-02

4. Enhancing Malware Detection Through Machine Learning Using XAI with SHAP Framework;IFIP Advances in Information and Communication Technology;2024

5. A novel vision transformer model for rumor prediction in COVID-19 data CT images;Journal of Intelligent & Fuzzy Systems;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3